
Chapter 3: Modifying Pictures using Loops

We perceive light different from
how it actually is
 Color is continuous

 Visible light is in the wavelengths between 370 and 730 nanometers
 That’s 0.00000037 and 0.00000073 meters

 But we perceive light with color sensors that peak
around 425 nm (blue), 550 nm (green), and 560 nm
(red).

 Our brain figures out which color is which by figuring out how
much of each kind of sensor is responding

 One implication: We perceive two kinds of “orange” — one
that’s spectral and one that’s red+yellow (hits our color sensors
just right)

 Dogs and other simpler animals have only two kinds of sensors
 They do see color. Just less color.

Luminance vs. Color
 We perceive borders of

things, motion, depth via
luminance
 Luminance is not the amount of

light, but our perception of the
amount of light.

 We see blue as “darker” than red,
even if same amount of light.

 Much of our luminance
perception is based on
comparison to backgrounds,
not raw values.

Luminance is actually
color blind. Completely
different part of the brain
does luminance vs. color.

Digitizing pictures as bunches of
little dots
 We digitize pictures into lots of little dots
 Enough dots and it looks like a continuous whole to

our eye
 Our eye has limited resolution
 Our background/depth acuity is particulary low

 Each picture element is referred to as a pixel

Pixels
Pixels are picture elements

 Each pixel object knows its color
 It also knows where it is in its picture

When we zoom the
picture to 500%, we
can see individual
pixels.

A Picture is a matrix of pixels
 It’s not a continuous line

of elements, that is, an
array

 A picture has two
dimensions: Width and
Height

 We need a two-
dimensional array: a
matrix

Referencing a matrix
 We talk about positions

in a matrix as (x,y), or
(horizontal, vertical)

 Element (1,0) in the
matrix at left is the value
12

 Element (0,2) is 6

Encoding color
 Each pixel encodes color at that position in the

picture

 Lots of encodings for color
 Printers use CMYK: Cyan, Magenta, Yellow, and blacK.
 Others use HSB for Hue, Saturation, and Brightness (also called

HSV for Hue, Saturation, and Value)

 We’ll use the most common for computers
 RGB: Red, Green, Blue

Encoding RGB
 Each component color (red,

green, and blue) is encoded
as a single byte

 Colors go from (0,0,0) to
(255,255,255)
 If all three components are the same,

the color is in greyscale
 (200,200,200) at (3,1)

 (0,0,0) (at position (3,0) in example)
is black

 (255,255,255) is white

How much can we encode in 8
bits?
 Let’s walk it through.

 If we have one bit, we can represent two patterns:
0 and 1.

 If we have two bits, we can represent four patterns:
00, 01, 10, and 11.

 If we have three bits, we can represent eight patterns: 000, 001, 010, 011,
100, 101, 110, 111

 General rule: In n bits, we can have 2n patterns
 In 8 bits, we can have 28 patterns, or 256
 If we make one pattern 0, then the highest value we can represent is 28-1,

or 255

Is that enough?
 We’re representing color in 24 (3 * 8) bits.

 That’s 16,777,216 (224) possible colors
 Our eye can discern millions of colors, so it’s probably

pretty close
 But the real limitation is the physical devices: We don’t

get 16 million colors out of a monitor
 Some graphics systems support 32 bits per pixel

 May be more pixels for color, or an additional 8 bits to
represent 256 levels of translucence

Size of images
320 x 240
image

640 x 480
image

1024 x 768
image

24 bit color 230,400
bytes

921,600 bytes 2,359,296
bytes

32 bit color 307,200
bytes

1,228,800
bytes

3,145,728
bytes

>>> file=pickAFile()
>>> print file
>>> picture=makePicture(file)
>>> print picture

This will show the height so you can figure out how big your
picture object is (in terms for space).

What’s a “picture”?
 An encoding that represents an image

 Knows its height and width
 Knows its filename
 Knows its window if it’s opened (via show and repainted

with repaint)

Manipulating pixels

>>> pixel=getPixel(picture,1,1)
>>> print pixel
Pixel, color=color r=168 g=131 b=105
>>> pixels=getPixels(picture)
>>> print pixels[0]
Pixel, color=color r=168 g=131 b=105

getPixel(picture,x,y) gets a single pixel.

getPixels(picture) gets all of them in an array.
(Square brackets is a standard array reference
notation—which we’ll generally not use.)

What can we do with a pixel?
• getRed, getGreen, and getBlue are

functions that take a pixel as input
and return a value between 0 and
255

• setRed, setGreen, and setBlue are
functions that take a pixel as input
and a value between 0 and 255

We can also get, set, and make Colors
 getColor takes a pixel as input and returns a Color

object with the color at that pixel
 setColor takes a pixel as input and a Color, then sets

the pixel to that color
 makeColor takes red, green, and blue values (in that

order) between 0 and 255, and returns a Color object
 pickAColor lets you use a color chooser and returns

the chosen color
 We also have functions that can makeLighter and

makeDarker an input color

How do you find out what RGB values you have?
And where?

Use the MediaTools!

The MediaTools menu
knows what variables
you have in the
Command Area that
contain pictures

Distance between colors?
 Sometimes you need to, e.g., when deciding if something

is a “close enough” match
 How do we measure distance?

 Pretend it’s cartesian coordinate system
 Distance between two points:

 Distance between two colors:

>>> print getRed(pixel)
168
>>> setRed(pixel,255)
>>> print getRed(pixel)
255
>>> color=getColor(pixel)
>>> print color
color r=255 g=131 b=105
>>> setColor(pixel,color)
>>> newColor=makeColor(0,100,0)
>>> print newColor
color r=0 g=100 b=0
>>> setColor(pixel,newColor)
>>> print getColor(pixel)
color r=0 g=100 b=0

>>> print color
color r=81 g=63 b=51
>>> print newcolor
color r=255 g=51 b=51
>>> print distance(color,newcolor)
174.41330224498358
>>> print color
color r=168 g=131 b=105
>>> print makeDarker(color)
color r=117 g=91 b=73
>>> print color
color r=117 g=91 b=73
>>> newcolor=pickAColor()
>>> print newcolor
color r=255 g=51 b=51

Manipulating Pixels

 This is best seen in JES

 The point is we can manipulate individual pixels to
change their colour.

 How? By selecting a pixel from an image and editing
its color values!

def decreaseRed(picture):
 for p in getPixels(picture):
 value=getRed(p)
 setRed(p,value*0.5)

Our first picture recipe works for
any picture

def decreaseRed(picture):
 for p in getPixels(picture):
 value=getRed(p)
 setRed(p,value*0.5)

Used like this:
>>> file = pickAFile()
>>> picture=makePicture(file)
>>> show(picture)
>>> decreaseRed(picture)
>>> repaint(picture)

How do you make an omelet?
 Something to do with eggs…
 What do you do with each of the eggs?
 And then what do you do?

All useful recipes involve repetition
- Take four eggs and crack them….
- Beat the eggs until…

We need these repetition (“iteration”)
constructs in computer algorithms too

Decreasing the red in a picture

 Recipe: To decrease the red
 Ingredients: One picture, name it pict
 Step 1: Get all the pixels of pict. For each pixel p in the set

of pixels…
 Step 2: Get the value of the red of pixel p, and set it to 50%

of its original value

Use a for loop!
Our first picture recipe

def decreaseRed(pict):
 allPixels = getPixels(pict)
 for p in allPixels:
 value = getRed(p)
 setRed(p, value * 0.5) The loop

- Note the
indentation!

How for loops
are written

 for is the name of the command
 An index variable is used to hold each of the different

values of a sequence
 The word in
 A function that generates a sequence

 The index variable will be the name for one value
in the sequence, each time through the loop

 A colon (“:”)
 And a block (the indented lines of code)

def decreaseRed(pict):
 allPixels = getPixels(pict)
 for p in allPixels:
 value = getRed(p)
 setRed(p, value * 0.5)

What happens when a for loop is
executed
 The index variable is set to an item in the sequence
 The block is executed

 The variable is often used inside the block
 Then execution loops to the for statement, where the

index variable gets set to the next item in the sequence
 Repeat until every value in the sequence was used.

getPixels returns a sequence of
pixels
 Each pixel knows its

color and place in the
original picture

 Change the pixel, you
change the picture

 So the loops here
assign the index
variable p to each pixel
in the picture picture,
one at a time.

def decreaseRed(picture):
 allPixels = getPixels(picture)
 for p in allPixels
 originalRed = getRed(p)
 setRed(p, originalRed * 0.5)

def decreaseRed(picture):
 for p in getPixels(picture):
 originalRed = getRed(p)
 setRed(p, originalRed * 0.5)

or equivalently…

Do we need the variable
originalRed?

 No: Having removed allPixels, we can also do without originalRed
in the same way:
 We can calculate the original red amount right when we are

ready to change it.
 It’s a matter of programming style. The meanings are the

same.

def decreaseRed(picture):
 for p in getPixels(picture):
 setRed(p, getRed(p) * 0.5)

def decreaseRed(picture):
 for p in getPixels(picture):
 originalRed = getRed(p)
 setRed(p, originalRed * 0.5)

Let’s walk that through slowly…

Here we take a picture
object in as a parameter to
the function and call it
picture

def decreaseRed(picture):
 for p in getPixels(picture):
 originalRed = getRed(p)
 setRed(p, originalRed * 0.5)

Now, get the pixels
We get all the pixels from
the picture, then make p be
the name of each one one at
a time

Pixel,
color
r=135
g=131
b=105

Pixel,
color
r=133
g=114
b=46

Pixel,
color
r=134
g=114
b=45

…

p

getPixels()

def decreaseRed(picture):
 for p in getPixels(picture):
 originalRed = getRed(p)
 setRed(p, originalRed * 0.5)

picture

Get the red value from pixel

We get the red value of
pixel p and name it
originalRed

…

originalRed= 135

def decreaseRed(picture):
 for p in getPixels(picture):
 originalRed = getRed(p)
 setRed(p, originalRed * 0.5)

picture
Pixel,
color
r=135
g=131
b=105

Pixel,
color
r=133
g=114
b=46

Pixel,
color
r=134
g=114
b=45

…

p

getPixels()

Now change the pixel

Set the red value of pixel p
to 0.5 (50%) of
originalRed

picture
Pixel,
color
r=67
g=131
b=105

…

p originalRed = 135

def decreaseRed(picture):
 for p in getPixels(picture):
 originalRed = getRed(p)
 setRed(p, originalRed * 0.5)

getPixels()Pixel,
color
r=133
g=114
b=46

Pixel,
color
r=134
g=114
b=45

Then move on to the next pixel
Move on to the next pixel
and name it p

picture
…

p value = 135

def decreaseRed(picture):
 for p in getPixels(picture):
 originalRed = getRed(p)
 setRed(p, originalRed * 0.5)

getPixels()Pixel,
color
r=67
g=131
b=105

Pixel,
color
r=133
g=114
b=46

Pixel,
color
r=134
g=114
b=45

p

Set originalRed to the red
value at the new p, then
change the red at that new
pixel.

p

def decreaseRed(picture):
 for p in getPixels(picture):
 originalRed = getRed(p)
 setRed(p, originalRed * 0.5)

picture
…

p value = 133

getPixels()Pixel,
color
r=67
g=131
b=105

Pixel,
color
r=133
g=114
b=46

Pixel,
color
r=134
g=114
b=45

Change the red value at pixel p to
50% of value

def decreaseRed(picture):
 for p in getPixels(picture):
 originalRed = getRed(p)
 setRed(p, originalRed * 0.5)

pp

picture
…

p value = 133

getPixels()Pixel,
color
r=67
g=131
b=105

Pixel,
color
r=66
g=114
b=46

Pixel,
color
r=134
g=114
b=45

And eventually, we do all pixels
 You can see the difference in this demo!

“Tracing/Stepping/Walking
through” the program
 What we just did is called “stepping” or “walking through”

the program
 You consider each step of the program, in the order

that the computer would execute it
 You consider what exactly would happen
 You write down what values each variable (name) has

at each point.
 It’s one of the most important debugging skills you can

have.
 And everyone has to do a lot of debugging, especially at

first.

Making it work for all pictures!
 Do we change the

program at all?
 Does it work for different

examples?
 What was the input

variable picture each
time, then?
 It was the value of whatever

picture we provided as input!

def decreaseRed(picture):
 for p in getPixels(picture):
 value=getRed(p)
 setRed(p,value*0.5)

NOTE: If you have a
variable picture in your
Command Area, that’s
not the same as the
picture in decreaseRed.

Read it as a Recipe

 Recipe: To decrease the red
 Ingredients: One picture, name it pict
 Step 1: Get all the pixels of pict. For each pixel p in

the pixels…
 Step 2: Get the value of the red of pixel p, and set it to

50% of its original value

def decreaseRed(pict):
 for p in getPixels(pict):
 value=getRed(p)
 setRed(p,value*0.5)

Let’s use something with known red to manipulate:
Santa Claus

What if you decrease Santa’s red again and again
and again…?

>>> file=pickAFile()
>>> pic=makePicture(file)
>>> decreaseRed(pic)
>>> show(pic)
(That’s the first one)
>>> decreaseRed(pic)
>>> repaint(pic)
(That’s the second)

If you make something you like…

 writePictureTo(picture,”filename”)
 Writes the picture out as a JPEG
 Be sure to end your filename as “.jpg”!
 If you don’t specify a full path,

will be saved in the same directory as JES.

Increasing Red
def increaseRed(picture):
 for p in getPixels(picture):
 value=getRed(p)
 setRed(p,value*1.2)

What happened here?!?

Remember that the limit
for redness is 255.

If you go beyond 255, all
kinds of weird things can
happen if you have
“Modulo” checked in
Options.

How does increaseRed differ from decreaseRed?
 Well, it does increase rather than decrease red, but

other than that…
 It takes the same input
 It can also work for any picture

 It’s a specification of a process that’ll work for any picture
 There’s nothing specific to a specific picture here.

Clearing Blue
def clearBlue(picture):
 for p in getPixels(picture):
 setBlue(p,0)

Again, this will work for any
picture.

Try stepping through this one
yourself!

Can we combine these?
Why not!
 How do we turn this beach

scene into a sunset?
 What happens at sunset?

 At first, I tried increasing the red,
but that made things like red specks
in the sand REALLY prominent.
 That can’t be how it really

works
 New Theory: As the sun sets, less

blue and green is visible, which
makes things look more red.

A Sunset-generation Function
def makeSunset(picture):
 for p in getPixels(picture):
 value=getBlue(p)
 setBlue(p,value*0.7)
 value=getGreen(p)
 setGreen(p,value*0.7)

Lightening and darkening an image
def lighten(picture):

 for px in getPixels(picture):

 color = getColor(px)

 color = makeLighter(color)

 setColor(px ,color)

def darken(picture):

 for px in getPixels(picture):

 color = getColor(px)

 color = makeDarker(color)

 setColor(px ,color)

Creating a negative
 Let’s think it through

 R,G,B go from 0 to 255
 Let’s say Red is 10. That’s very light red.

 What’s the opposite? LOTS of Red!
 The negative of that would be 245: 255-10

 So, for each pixel, if we negate each color component
in creating a new color, we negate the whole picture.

def negative(picture):
 for px in getPixels(picture):
 red=getRed(px)
 green=getGreen(px)
 blue=getBlue(px)
 negColor=makeColor(255-red, 255-green, 255-blue)
 setColor(px,negColor)

Original, negative, negative-negative

Converting to greyscale
 We know that if red=green=blue, we get grey

 But what value do we set all three to?
 What we need is a value representing the darkness of the color,

the luminance
 There are lots of ways of getting it, but one way that works

reasonably well is dirt simple—simply take the average:

def greyScale(picture):
 for p in getPixels(picture):
 intensity = (getRed(p)+getGreen(p)+getBlue(p))/3
 setColor(p,makeColor(intensity,intensity,intensity))

Can we get back again?
Nope
 We’ve lost information

 We no longer know what the ratios are between the
reds, the greens, and the blues

 We no longer know any particular value.

But that’s not really the best greyscale
 In reality, we don’t perceive red, green, and blue as

equal in their amount of luminance: How bright (or
non-bright) something is.
 We tend to see blue as “darker” and red as “brighter”
 Even if, physically, the same amount of light is coming

off of each
 Photoshop’s greyscale is very nice: Very similar to the

way that our eye sees it
 B&W TV’s are also pretty good

Building a better greyscale
 We’ll weight red, green, and blue based on how light we

perceive them to be, based on laboratory experiments.

def greyScaleNew(picture):
 for px in getPixels(picture):
 newRed = getRed(px) * 0.299
 newGreen = getGreen(px) * 0.587
 newBlue = getBlue(px) * 0.114
 luminance = newRed+newGreen+newBlue
 setColor(px,makeColor(luminance,luminance,luminance))

Comparing the two greyscales:
Average on left, weighted on right

Let’s use a black cat to compare

Average on left, weighted on right

If you make something you like…
 writePictureTo(picture,”C:/filename.jpg”)
 Writes the picture out as a JPEG
 Be sure to end your filename as “.jpg”!

A different sunset-generation
function

def makeSunset2(picture):
 reduceBlue(picture)
 reduceGreen(picture)

def reduceBlue(picture):
 for p in getPixels(picture):
 value=getBlue(p)
 setBlue(p,value *0.7)

def reduceGreen(picture):
 for p in getPixels(picture):
 value=getGreen(p)
 setGreen(p,value *0.7)

 This one does the same thing
as the earlier form.

 It’s easier to read and
understand: “To make a
sunset is to reduceBlue and
reduceGreen.”

 We use hierarchical
decomposition to break down
the problem.

 This version is less
inefficient, but that’s okay.

 Programs are written for
people, not computers.

Let’s talk about functions
 How can we reuse variable names like picture in both

a function and in the Command Area?
 Why do we write the functions like this? Would

other ways be just as good?
 Is there such a thing as a better or worse function?
 Why don’t we just build in calls to pickAFile and

makePicture?

One and only one thing
 We write functions as we do to make them general

and reusable
 Programmers hate to have to re-write something

they’ve written before
 They write functions in a general way so that they can

be used in many circumstances.
 What makes a function general and thus reusable?

 A reusable function does One and Only One Thing

Contrast these two programs
def makeSunset(picture):
 for p in getPixels(picture):
 value=getBlue(p)
 setBlue(p,value*0.7)
 value=getGreen(p)
 setGreen(p,value*0.7)

def makeSunset(picture):
 reduceBlue(picture)
 reduceGreen(picture)

def reduceBlue(picture):
 for p in getPixels(picture):
 value=getBlue(p)
 setBlue(p,value*0.7)

def reduceGreen(picture):
 for p in getPixels(picture):
 value=getGreen(p)
 setGreen(p,value*0.7)

Yes, they do the exact
same thing!

makeSunset(somepict)
works the same in both
cases

Observations on the new makeSunset
 It’s okay to have more than one

function in the same Program
Area (and file)

 makeSunset in this one is
somewhat easier to read.
 It’s clear what it does

“reduceBlue” and
“reduceGreen”

 That’s important!

def makeSunset(picture):
 reduceBlue(picture)
 reduceGreen(picture)

def reduceBlue(picture):
 for p in getPixels(picture):
 value=getBlue(p)
 setBlue(p,value*0.7)

def reduceGreen(picture):
 for p in getPixels(picture):
 value=getGreen(p)
 setGreen(p,value*0.7)

Programs are written for people, not computers!

Considering variations
 We can only do this because

reduceBlue and reduceGreen,
do one and only one thing.

 If we put pickAFile and
makePicture in them, we’d
have to pick a file twice (better
be the same file), make the
picture—then save the picture
so that the next one could get it!

def makeSunset(picture):
 reduceBlue(picture)
 reduceGreen(picture)

def reduceBlue(picture):
 for p in getPixels(picture):
 value=getBlue(p)
 setBlue(p,value*0.7)

def reduceGreen(picture):
 for p in getPixels(picture):
 value=getGreen(p)
 setGreen(p,value*0.7)

Does makeSunset do one and only one thing?
 Yes, but it’s a higher-level, more abstract thing.

 It’s built on lower-level one and only one thing
 We call this hierarchical decomposition.

 You have some thing that you want the computer to
do?

 Redefine that thing in terms of smaller things
 Repeat until you know how to write the smaller things
 Then write the larger things in terms of the smaller

things.

Are all these pictures the same?
 What if we use this like this in

the Command Area:
>>> file=pickAFile()
>>> picture=makePicture(file)
>>> makeSunset(picture)
>>> show(picture)

def makeSunset(picture):
 reduceBlue(picture)
 reduceGreen(picture)

def reduceBlue(picture):
 for p in getPixels(picture):
 value=getBlue(p)
 setBlue(p,value*0.7)

def reduceGreen(picture):
 for p in getPixels(picture):
 value=getGreen(p)
 setGreen(p,value*0.7)

What happens when we use a function
 When we type in the Command Area
makeSunset(picture)
 Whatever object that is in the Command Area variable picture

becomes the value of the placeholder (input) variable picture in
def makeSunset(picture):
 reduceBlue(picture)
 reduceGreen(picture)
 makeSunset’s picture is then passed as input to reduceBlue and

reduceGreen, but their input variables are completely different
from makeSunset’s picture.
 For the life of the functions, they are the same values (picture objects)

Names have contexts
 In natural language, the same word has different

meanings depending on context.
 I’m going to fly to Vegas.
 Would you please swat that fly?

 A function is its own context.
 Input variables (placeholders) take on the value of the input values only for

the life of the function
 Only while it’s executing

 Variables defined within a function also only exist within the context of
that function

 The context of a function is also called its scope

Input variables are placeholders
 Think of the input variable as a placeholder

 It takes the place of the input object
 During the time that the function is executing, the

placeholder variable stands for the input object.
 When we modify the placeholder by changing its

pixels with setRed, we actually change the input
object.

Variables within functions stay within functions
 The variable value in

decreaseRed is created
within the scope of
decreaseRed
 That means that it only exists while

decreseRed is executing
 If we tried to print value

after running decreaseRed,
it would work ONLY if we
already had a variable
defined in the Command
Area
 The name value within decreaseRed

doesn’t exist outside of that function
 We call that a local variable

def decreaseRed(picture):
 for p in getPixels(picture):
 value=getRed(p)
 setRed(p,value*0.5)

Writing real functions
 Functions in the mathematics sense take input and

usually return output.
 Like ord() or makePicture()

 What if you create something inside a function that
you do want to get back to the Command Area?
 You can return it.
 We’ll talk more about return later—that’s how

functions output something

Consider these two functions
def decreaseRed(picture):
 for p in getPixels(picture):
 value=getRed(p)
 setRed(p,value*0.5)

def decreaseRed(picture, amount):
 for p in getPixels(picture):
 value=getRed(p)
 setRed(p,value*amount)

• First, it’s perfectly okay to have multiple inputs to a function.

• The new decreaseRed now takes an input of the multiplier for the
red value.

• decreaseRed(picture,0.5) would do the same thing

• decreaseRed(picture,1.25) would increase red 25%

Names are important
 This function should

probably be called
changeRed because
that’s what it does.

 Is it more general?
Yes.

 But is it the one and
only one thing that
you need done?
 If not, then it may be less

understandable.
 You can be too general

def decreaseRed(picture, amount):
 for p in getPixels(picture):
 value=getRed(p)
 setRed(p,value*amount)

Understandability comes first
 Consider these two functions below
 They do the same thing!
 The one on the right looks like the other

increase/decrease functions we’ve written.
 That may make it more understandable for you to write first.
 But later, it doesn’t make much sense to you

 “Why multiply by zero, when the result is always zero?!?”

def clearBlue(picture):
 for p in getPixels(picture):
 setBlue(p,0)

def clearBlue(picture):
 for p in getPixels(picture):
 value = getBlue(p)
 setBlue(p,value*0)

Always write the program understandable first
 Write your functions so that you can understand

them first
 Get your program running

 THEN make them better
 Make them more understandable to others

 Set to zero rather than multiply by zero
 Another programmer (or you in six months) may not remember

or be thinking about increase/decrease functions
 Make them more efficient

 The new version of makeSunset takes twice as long as the first
version, because it changes all the pixels twice

	Introduction to Computing and Programming in Python: A Multimedia Approach
	Chapter Learning Objectives
	We perceive light different from how it actually is
	Luminance vs. Color
	Digitizing pictures as bunches of little dots
	Pixels
	A Picture is a matrix of pixels
	Referencing a matrix
	Encoding color
	Encoding RGB
	How much can we encode in 8 bits?
	Is that enough?
	Size of images
	Reminder: Manipulating Pictures
	What’s a “picture”?
	Manipulating pixels
	What can we do with a pixel?
	We can also get, set, and make Colors
	How do you find out what RGB values you have? And where?
	Distance between colors?
	Demonstrating: Manipulating Colors
	Slide 22
	Use a loop! Our first picture recipe
	Our first picture recipe works for any picture
	How do you make an omelet?
	Decreasing the red in a picture
	Use a for loop! Our first picture recipe
	How for loops are written
	What happens when a for loop is executed
	getPixels returns a sequence of pixels
	Do we need the variable originalRed?
	Let’s walk that through slowly…
	Now, get the pixels
	Slide 34
	Now change the pixel
	Then move on to the next pixel
	Get its red value
	And change this red value
	And eventually, we do all pixels
	“Tracing/Stepping/Walking through” the program
	Think about what we just did
	Read it as a Recipe
	Let’s use something with known red to manipulate: Santa Claus
	What if you decrease Santa’s red again and again and again…?
	If you make something you like…
	Increasing Red
	How does increaseRed differ from decreaseRed?
	Clearing Blue
	Can we combine these? Why not!
	A Sunset-generation Function
	Lightening and darkening an image
	Creating a negative
	Recipe for creating a negative
	Original, negative, negative-negative
	Converting to greyscale
	Slide 56
	Can we get back again? Nope
	But that’s not really the best greyscale
	Building a better greyscale
	Comparing the two greyscales: Average on left, weighted on right
	Let’s use a black cat to compare
	Average on left, weighted on right
	Slide 63
	A different sunset-generation function
	Let’s talk about functions
	One and only one thing
	Contrast these two programs
	Observations on the new makeSunset
	Considering variations
	Does makeSunset do one and only one thing?
	Are all these pictures the same?
	What happens when we use a function
	Names have contexts
	Input variables are placeholders
	Variables within functions stay within functions
	Writing real functions
	Consider these two functions
	Names are important
	Understandability comes first
	Always write the program understandable first

